High-resolution Genomic Surveillance of 2014 Ebolavirus Using Shared Subclonal Variants
نویسندگان
چکیده
BACKGROUND Viral outbreaks, such as the 2014 ebolavirus, can spread rapidly and have complex evolutionary dynamics, including coinfection and bulk transmission of multiple viral populations. Genomic surveillance can be hindered when the spread of the outbreak exceeds the evolutionary rate, in which case consensus approaches will have limited resolution. Deep sequencing of infected patients can identify genomic variants present in intrahost populations at subclonal frequencies (i.e. <50%). Shared subclonal variants (SSVs) can provide additional phylogenetic resolution and inform about disease transmission patterns. METHODS We use metrics from population genetics to analyze data from the 2014 ebolavirus outbreak in Sierra Leone and identify phylogenetic signal arising from SSVs. We use methods derived from information theory to measure a lower bound on transmission bottleneck size. RESULTS AND CONCLUSIONS We identify several SSV that shed light on phylogenetic relationships not captured by consensus-based analyses. We find that transmission bottleneck size is larger than one founder population, yet significantly smaller than the intrahost effective population. Our results demonstrate the important role of shared subclonal variants in genomic surveillance.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملMicroevolution during an Anthrax Outbreak Leading to Clonal Heterogeneity and Penicillin Resistance
Anthrax is a bacterial disease primarily affecting grazing animals but it can also cause severe disease in humans. We have used genomic epidemiology to study microevolution of the bacterium in a confined outbreak in cattle which involved emergence of an antibiotic-resistant phenotype. At the time of death, the animals contained a heterogeneous population of Single Nucleotide Variants (SNVs), so...
متن کاملShared Genomic Variants: Identification of Transmission Routes Using Pathogen Deep-Sequence Data
Sequencing pathogen samples during a communicable disease outbreak is becoming an increasingly common procedure in epidemiologic investigations. Identifying who infected whom sheds considerable light on transmission patterns, high-risk settings and subpopulations, and the effectiveness of infection control. Genomic data shed new light on transmission dynamics and can be used to identify cluster...
متن کاملMutation position within evolutionary subclonal architecture in AML.
Cytogenetic data suggest that acute myeloid leukemia (AML) develops through a process of branching evolution, especially during relapse and progression. Recent genomic data from AML cases using digital sequencing, temporal comparisons, xenograft cloning, and single-cell analysis indicate that most, if not all, AML cases emerge through branching evolution. According to a review of the current li...
متن کاملMultiregion ultra‐deep sequencing reveals early intermixing and variable levels of intratumoral heterogeneity in colorectal cancer
Intratumor heterogeneity (ITH) contributes to cancer progression and chemoresistance. We sought to comprehensively describe ITH of somatic mutations, copy number, and transcriptomic alterations involving clinically and biologically relevant gene pathways in colorectal cancer (CRC). We performed multiregion, high-depth (384× on average) sequencing of 799 cancer-associated genes in 24 spatially s...
متن کامل